University of Amsterdam x

System and Network Engineering lI

X

Improving the Performance of IPOP
Research Project 2

Supervisors:
Ana Oprescu
Kaveh Razavi
Kyuho Jeong
Renato Figueiredo

Dragos Laurentiu Barosan
dragos.barosan@o0s3.nl

IPOP

* IP over P2P Discover
. . Discover . Online
* Creates links between users leveraging Online / \ peers
. . . peers / \.
online social connections 8 / N\
* Can bypass NAT / N\
Config. | ExecutelIPOP / Config.
: : ‘ | File
* Secure links i o pop I
* It supports existing applications 4/ \ aopTone
g .- . . ua«\c pA— ___________
e Libjingle is used for packet forwarding 7 N o veN / \ 0fs
/ / V\L y (- / 4 \

——— | PNIC (eth) VNIC (tap)

VNIC(tap) | | PNIC (eth) f—

Figueiredo, R. (2014) IP over P2P White Paper

Motivation

MY
'

* IPOP allows users to establish
connections in cloud
infrastructures

 Performance is bad

* 260 Mbps average throughput with
IPOP

* 950 Mbps average over direct link

—TTEE——

IPOP node 1 IPOP node 2

* Performance improvement could
enable larger adoption

Research Questions

* What are the sources of the performance overhead?

 What are the solutions?

Starting ldeas

* IPOP assumes that connections are always over insecure networks

* IPOP was not developed with performance in mind
* Possible inefficiencies in the code

Security Performance

* Uses DTLS as security

* Measurements show increase of ~100% when security is disabled
* 550 Mbps average throughput for an unsecured connection
e 260 Mbps average throughput for DTLS connection

* Cloud Infrastructure use case requires security for a small number of
peers
e Security cannot be enabled selectively for each peer
A more granular approach is better

Enabling Selective Security 1

e Easy solution
e Each IPOP node has an IPOP interface with an associated IP

In the local controller configuration file add the IP’s associated with the peers
with which security should be enabled

The list of IP’s is checked when creating the link
Does not scale
It is possible that the IP is not known

Enabling Selective Security 2

* Define a set of groups in the controller configuration file
 Security is enabled if the intersection of the sets is not empty

* Encode group information in “con_req” and “con_resp” messages

S

“Con_req”
O -
(T

i n”n
@ POPPEER1 —ON_Tesp IPOP PEER 2 m

Improving Code Performance

VPN controller

A Controller
TinCan API
Application ISON/UDP
Socket Packet Link
Socket P
API A(IDD? © Handling Setup
»|_Thread Thread

o \ IPOP-TInCan

Tap \' A

R
l API ‘ Send ecv

T IPOP-Tap

VNIC (tap) PNIC (eth)

Figueiredo, R. (2014) IP over P2P White Paper

Measurements

* Analyze where time is spent by the processor
e All debugging symbols were enabled
e Oprofile
e Kernel and libc symbols
e Source code annotated with usage percentage
e Zoom
* Presents a top down callgraph

e CPU load measurements

* Timing measurements in the code

Receiver bottleneck

e Oprofile
* ~33 million samples in the receiver
e ~16 million samples in the sender

* Core on which the receiving thread executes is at ~100% on the
receiver side

Receiving Packets in IPOP

* Receiving Thread introduces serialization
* Writing to the tap interface is synchronous

Packet Handling Receiving Thread

Thread
RECEIVE
ADD DATA RECEIVE
DATA OVER - T CEIVE - O - PROCESS - WRITE TO
PHYSICAL BUEUE QUEUE PACKET IPOP TAP
INTERFACE

2-4 microseconds
execution time

9-12 microseconds

execution time

Solutions

* Implement the Producer-Consumer pattern
* Reading is faster that writing => The writing thread does not wait

* First implementation with no mutex
* Use conditional signals as a refinement

* Implement asynchronous writes to save time

* Linux offers two possibilities
e POSIX AlO — creates multiple writing threads
* Libaio —actually queues up write requests in the kernel

Current status & Conclusion

Improve performance up by a factor of two and more to come...

e Users have the possibility of a granular security option
* Analysis shows where time is consumed
* Implementation of more efficient packet processing

Future Work

* Find and fix possible bugs
* Investigate other performance bottlenecks
* Discover new use cases for IPOP

